\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (E.C.E. : CBCS) IV-Semester Main Examinations, January-2021 Electronic Circuits

Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A $(9 \times 2=18$ Marks $)$

Q. No.	Stem of the question	M	L	CO	PO
1.	State the significance of lower and upper 3dB frequencies in high pass and low pass RC circuits respectively	2	1	1	2
2.	Distinguish between the comparator and clipping circuit	2	2	1	2
3.	Draw the circuit diagram of emitter coupled BJT differential amplifier	2	1	2	1
4.	List the applications of emitter follower	2	1	2	1
5.	What is the significance of sampling circuit in negative feedback amplifiers?	2	1	3	2
6.	Compute the overall input and output resistances of negative feedback amplifier with $Z_{i}=1 \mathrm{~K} ; \mathrm{Zo}_{0}=10 \mathrm{~K} ; \mathrm{A}_{v}=100$; and $\beta=0.5$ for a voltage series feedback amplifier circuit?	2	3	3	2
7.	State and explain the Barkhausen's conditions	2	2	4	1
8.	Write the condition for sustained oscillations of Hartley oscillator and write the expression for frequency of oscillations in the circuit?	2	2	4	1
9.	Justify, why Non-linear distortion is called harmonic distortion?	2	2	5	2
10.	What is meant by cross over distortion?	2	2	5	2
11.	Draw the response of high-pass RC Circuit to the step input	2	2	1	1
12.	Give detailed classification of amplifiers	2	2	2	1
	Part-B ($3 \times 14=42 \mathrm{Marks}$)				
13. a)	For a High-pass RC circuit, develop the expressions for the \%tilt for a square wave input?	10	4	1	2
b)	A Pulse generator with an output resistance of $R=500$ ohms is connected to an oscilloscope with an input capacitance of $\mathrm{C}=30 \mathrm{pF}$. Determine the time constant and rise time of the circuit?	4	4	1	2
14. a)	Derive the expressions voltage gain, current gain, input impedance and output admittance for a BJT using h-parameters for a CB configuration	7	3	2	3
b)	Draw the circuit diagram and explain the salient features of Darlington amplifier	7	3	2	2

15. a) Explain the effect of negative feedback on Input impedance, Output Impedance, and Voltage gain for the Current shunt negative feedback amplifiers with necessary diagrams
b) Negative feedback effects the bandwidth of amplifiers. Justify the statement
16. a) Explain the principle of operation of RC Phase shift oscillator with necessary circuit diagram
b) Analyse the advantages and limitations of crystal oscillators
17. a) Draw the circuit diagram of a Class-B push pull amplifier and explain its working with the help of necessary waveforms
b) Describe the characteristics of tuned amplifiers. Also give the applications of tuned amplifiers
18. a) Design a circuit to clamp the positive peaks of a sine waveform with 5 V peak to -2V level and also draw the necessary waveforms
b) Analyse and compute the current gain A_{l}, the input impedance R_{l}, Voltage gain $A v$, and output resistance R_{0} using h-parameter exact analysis for the given circuit. The CE h-parameters are $h_{i e}=1200 \mathrm{ohms}$, $\mathrm{h}_{\mathrm{re}}=2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=60$ and $\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$.

19. Answer any two of the following:
a) Analyse and compare the performance parameters of current series and voltage series feedback amplifiers
b) Explain the operation of Colpitts Oscillator with necessary diagram
c) Draw the circuit diagram of class - A transformer coupled Power amplifier and explain its operation

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60.5%
2	Knowledge on application and analysis (Level-3 \& 4)	39.5%
3	* Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	0%

